
PyMOL User's Guide

written by
Warren L. DeLano, Ph.D.

with assistance from
Sarina Bromberg, Ph.D.

Copyright © 2004
DeLano Scientific LLC
All Rights Reserved.

http://www.delanoscientific.com

Table of Contents
Copyright Notice and Usage Terms..1

Copyright Notice..1
Terms of Usage for the PyMOL User's Manual..1
Trademarks..1

Preface..2
Why PyMOL?..2
Words of Caution...2
Strengths..3
Weaknesses..3

Introduction...4
Welcome to PyMOL!...4
Is PyMOL Free Software?...4

Yes, but..4
The DeLano Scientific Mission...4

Installation...6
Windows..6

Recommendations...6
Minimal System Requirements...6
Python−Free Installation...6
Python−Dependent Installation...6

MacOS X...6
Recommendations...7
Minimial Requirements...7
If you use Fink...7
If you do not use Fink..7

Linux and Unix..8
System Requirements..8
Dependency−Free Approaches...8
Dependency−Based Approaches...9

Getting Started with Mouse Controls...10
Launching..10

Using the Mouse..10
Using a Command Line...10

PyMOL's Windows..11
The Viewer Window...11
The External GUI Window...12

Loading PDB Files...13
Manipulating the View..13

Basic Mouse Control...13
Virtual Trackball Rotation...14
Moving Clipping Planes..16
Changing the Origin of Rotation...16
Getting Comfortable..17

i

Table of Contents
Getting Started with Commands...18

Recording Your Work (Optional)..18
Loading Data..18
Manipulating Objects...19

Atom Selections..19
Coloring Objects and Selections...21
Turning Objects and Selections On and Off...22

 Changing Your Point of View..23
Saving Your Work...23

Scripts and Log Files...24
png Files..24
Session Files..25

Command−Line Shortcuts...25
Command Completion using TAB..26
Filename Completion using TAB..26
Automatic Inferences..26

 Other Typed Commands and Help...27

Command Syntax and Atom Selections..28
Syntax..28

Selection−expressions...28
Named Atom Selections..29
Single−word Selectors...31
Property Selectors..31
Selection Algebra..34
Atom Selection Macros...35

Calling Python from within PyMOL...37

Cartoon Representations..38
Background..38

Accessibility..38
Pretty and Correct..38

Customization..41
Cartoon Types...41
Fancy Helices..44

Secondary Structure Assignment...45

Ray−Tracing..46
Important Settings..46
Saving Images..47

png...47

Stereo..48
Introduction..48
Supported Stereo Modes..48

Crosseye Stereo...48
Walleye Stereo..48
Hardware Stereo..48

ii

Table of Contents
Stereo

Generating Stereo Figures..48

Movies..49
Concepts...49

States and Frames..49
Important Commands To Know..49

load..49
mset...49
mdo..50
mmatrix...50

Simple Examples...50
Complex Examples..51
Previewing Ray−traced Movie Images..51

cache_frames...51
mclear..51

Saving movies..51
mpng..52

Advanced Mouse Controls...53
Picking Atoms and Bonds..53
Example Usage of the "pk" Atom Selections..53
The "lb" and "rb" Selections..53
Conformational Editing...54

Crystallography Applications..55
Crystal Symmetry..55

load..55
symexp...55

Electron Density Maps...56
load..56
isomesh and isodot..56

Compiled Graphics Objects (CGOs) and Molscript Ribbons..57
Introduction..57
Molscript Ribbons..57

load..57
Using Molscript...57

Creating Compiled Graphics Objects..58
CGO Reference..59

load_cgo..59

Callback Objects and PyOpenGL...61
Introduction..61
Example...61

load_callback...62

iii

Copyright Notice and Usage Terms

Copyright Notice

The PyMOL User's Manual is Copyright © 1998−2004 DeLano Scientific LLC, San Carlos, California,
U.S.A. All Rights Reserved.

Terms of Usage for the PyMOL User's Manual

This manual is NOT free. It is a PyMOL Incentive Product created to help you use the program while also
generating recurring sponsorship for the project. This manual is made available for evaluation via the "honor"
system: You may evaluate this manual for a continuous period of up to one year without obligation. If
you wish to continue using this document beyond the end of the evaluation period, then you must become a
sponsor of the project by purchasing a PyMOL license and a subscription to maintenance and support from
DeLano Scientific LLC (http://www.delanoscientific.com).

Of course, if you are willing to sponsor the project today, then please don't wait a full year to start. The sooner
your sponsorship comes in, the sooner we can apply it to improve the software and documentation!

Existing PyMOL subscribers may use this manual for no additional cost. However, subscribers who do not
renew their subscription upon expiration must discountinue use of this and all other PyMOL Incentive
Products. Though we have no direct means of enforcing this, we ask, in recognition of our declared scientific
mission, that you honor the trust placed in you.

PyMOL users who are unable to sponsor the project by purchasing a PyMOL license and maintenance
subscription are welcome to use Open−Source versions of PyMOL and any free documentation that can be
found on the internet.

Trademarks

PyMOL, DeLano Scientific, and the DeLano Scientific Logo are trademarks of DeLano Scientific LLC.
Macintosh is a registered trademark of Apple Computer Inc., registered in the U.S. and other countries.
Windows is a registered trademark of Microsoft Corporation in the U.S. and other countries. Linux is a
trademark of Linus Torvalds. Unix is a trademark of The Open Group in the U.S. and other countries.
MolScript is a trademark of Avatar Software AB. All other trademarks are the property of their respective
owners.

This chapter last updated June 2004 by Warren L. DeLano, Ph.D.

Copyright © 2004 DeLano Scientific LLC. All rights reserved.

Copyright Notice and Usage Terms 1

http://www.pymol.org/funding.html
http://www.delanoscientific.com
http://www.delanoscientific.com/about.html
http://www.delanoscientific.com/about.html
http://www.delanoscientific.com

Preface

Why PyMOL?

PyMOL is one lone scientist's answer to the frustration he encountered with existing visualization and
modeling software as a practicing computational scientist.

Anyone who has studied the remarkable complexity of a macromolecular structure will likely agree that
visualization is essential to understanding structural biology. Nevertheless, most researchers who use
visualization packages ultimately run up against limitations inherent in them which make it difficult or
impossible to get exactly what you need. Such limitations in a closed−source commercial software package
cannot be easily surmounted, and the same is still true for free programs which aren't available in source form.

Only open−source software allows you to surmount problems by directly changing and enhancing the way
software operates, and it places virtually no restrictions on your power and opportunity to innovate. For these
reasons, we believe that open−source software is an intrinsically superior research product and will
provide greatest benefit to computer−assisted scientific research over the long term.

Launched over Christmas break in December 1999, PyMOL was originally designed to: (1) visualize multiple
conformations of a single structure [trajectories or docked ligand ensembles] (2) interface with external
programs, (3) provide professional strength graphics under both Windows and Unix, (4) prepare publication
quality images, and (5) fit into a tight budget. All of these goals have since been realized. Although PyMOL is
far from perfect and lacks such desirable features such as a general "undo" capacity, it now has many useful
capabilities for the practicing research scientist. We hope that you will find PyMOL to be a valuable tool for
your work, and we encourage you to let us know what ideas you have for making it even better.

Words of Caution

About the Manual: This version of the manual has been updated for PyMOL version 0.86 (January 2003) but
is still quite rough. Prepare yourself for omissions, errors, and potentially obsolete information. Make an
informed decision to use the PyMOL manual at your own risk. Understand that thiss same caution applies to
the program as a whole −− you shouldn't be using PyMOL if you aren't willing to troubleshoot problems and
take the initiative on the mailing list in order to discover solutions.

About the program: PyMOL was created in an efficient but highly pragmatic manner, with heavy emphasis
on delivering powerful features to end users. Expediency has almost always taken precedence over elegance,
and adherence to established software development practices is inconsistent. PyMOL is about getting the job
done now, as fast as possible, by whatever means were available. PyMOL succeeds in meeting important
needs today, but we view it as merely an initial step in a promising direction.

In time, we hope that we and others will follow by creating PyMOL−like software platforms which meet the
needs of users but also provides the design rigor and code quality necessary to enable broad participation of
outside developers. Though PyMOL will undoubtably continue to expand and improve over the next decade,
we expectd that its long term impact will primarily be to inspire other development efforts having more time
and resources, and which will undoubtable achieve greater heights.

That isn't to say that you can't find good things about PyMOL's internal design. Indeed, we believe that there
are many successful and instructive aspects to the program. However, we just hope to appropriately calibrate
your expectations with respect to the code you will find if you with to "dive under to hood". Though the

Preface 2

program is Open−Source, it is best thought of as a dense, semi−opaque tool, best extended through Python
rather than as a C coding environment in which to embed new technologies.

Strengths

Cross−Platform. A single code base supports both Unix, Macintosh, and Windows, using OpenGL
and Python and a small set of Open−source external dependencies.

•

Command−Line and GUI Control Real world applications require both.•
Atom Selections. Arbitrary logical expressions facilitate focused visualization and editing.•
Molecular Splits/Joins. Structures can be sliced, diced, and reassembled on the fly and written out to
standard files (i.e. PDB).

•

Movies. Creating movies is as simple as loading multiple PDB files and hitting play.•
Surfaces. As good if not better than Grasp, and mesh surfaces are supported too.•
Cartoon Ribbons. PyMOL's cartoons are almost as nice as Molscript but are much easier to create
and render.

•

Scripting. The best way to control PyMOL is through reusable scripts, which can be written in the
command language or in Python.

•

Rendering. A built−in ray tracer gives you shadows and depth on any scene. You also render
externally.

•

Output. PNG files output from PyMOL can be directly imported into PowerPoint.•
Conformational Editing. Click and drag interface allows you to edit conformations naturally.
Sculpting allows the molecule to adapt to your changes.

•

Expandability. The PyMOL Python API provides a solid way to extend and interface.•

Weaknesses

User Interface. Development has been focused on capabilities, not on easy−of−use for new users.•
Documentation. Only recently has any documentation become available.•
Object−Orientation. There is a single monolithic, functional API.•
Electrostatics. PyMOL is not yet a replacement for Delphi/Grasp.•
No Mechanics Engine Although PyMOL sports potent molecular editing features, you can't yet
perform any "clean−up".

•

This chapter last updated January 2004 by Warren L. DeLano, Ph.D.

Strengths 3

Introduction

Welcome to PyMOL!

Over the years, PyMOL has become a capable molecular viewer with support for animations, high−quality
rendering, crystallography, and other common molecular graphics activities. It has been be adopted by many
hundreds (perhaps even thousands) of scientists spread over thirty countries. However, PyMOL is still very
much a work in progress, with development expected to continue for years to come.

Is PyMOL Free Software?

Yes, but...

PyMOL is Copyrighted software that is Free for all parties to use, modify, and redistribute. Because of
PyMOL's unusual status, you can be confident that the time you invest today in learning the package will
provide you with long term utility no matter where your career happens to takes you. You will never be
required to pay software license fees in order to use Open−Source PyMOL or to share it with others who
might find it useful.

Nevertheless, PyMOL is not free to develop, document, maintain, and support. If you decide to adopt the
package, then you are asked and expected to contribute to the project in some manner. Although such
contributions may take a variety of forms, most PyMOL supporters choose to sponsor the project by
purchasing (usually through their school or employer) a license and a renewable subscription to maintenance
and support. All such contributions are entirely volutary since we have intentionally abandoned the usual
means of compelling compliance. Instead, we depend on your free will to provide vital funding for
development and to cover other necessary expenses. In return, we provide specific incentives (called Incentive
Products) as a reward for helping to fund the project. Example incentive products include this manual, extra
features, enhanced platform−specific binary versions, and various other conveniences

Please take this request seriously. If you value PyMOL, then it is clearly in your interest to sponsor it. To find
out how to donate or to purchase a license, visit the PyMOL web site at http://www.pymol.org

The DeLano Scientific Mission

DeLano Scientific LLC is a private vision−centered software company which owns, develops, and supports
the PyMOL package. Our mission as a commercial entity is to create highly effective tools for scientific
research and to distribute them as broadly as possible while still succeeding as a healthy business. As a
"boot−strapped" company, DeLano Scientific is not beholden to any outside investors who would insist upon
maximum returns on investment. Thus, we have the rare privilege of being able to place Scientific and
Medical Progress ahead of Profit in our hierarchy of values.

We have chosen a free and open−source approach for PyMOL because we believe this strategy will have the
greatest positive impact on humanity. Visualization is key part of understanding the nature of life at the
molecular level, and powerful visualization tools need to be universally available to all students and scientists
if we are to make rapid progress in biomedical research. If PyMOL is successful, then we hope to expand the
scope of our endeavors to meet other critical research needs in related areas.

Introduction 4

http://www.pymol.org
http://www.delanoscientific.com

Growth of the DeLano Scientific will depend entirely on the willingness of PyMOL users to adopt, nuture,
and advocate for our volitional approach to software funding. Eventually, we hope to evolve into a major
provider of scientific software for biomedical research and be distinguished by the quality, openness, and
accessibility of our products, the trusting and nonexploitive relationships we form with our customers, and our
willingness to work with all parties in advancing scientific software technologies.

This chapter last updated June 2004 by Warren L. DeLano, Ph.D.

Introduction 5

Installation

Windows

Recommendations

Windows 2000 or XP.•
A late−model 3D OpenGL compatible graphics accelerator card from nVidia, ATI, 3Dlabs or similar.•
512 MB RAM (768 MB or 1 GB preferred).•
3 Ghz Pentium 4 processor or similar.•

Minimal System Requirements

Windows 98 and ME, or later. PyMOL will not run on Windows 95 and NT.•
3D OpenGL compatible graphics accelerator card.•
256 MB RAM.•
500 Mhz Pentium 3 processor.•

Unless you have prior experience with Python, we recommend installing a version of PyMOL which does not
require an external Python interpreter. Avoid versions of which contain "−py21", "−py22", "−py23" or similar
in the filename.

Python−Free Installation

Download the ".zip" format archive. For example,

pymol−0_90−bin−win32.zip

1.

Extract the .zip file using WinZip (Windows XP can open .zip files directly).2.
Double click on the "Setup" or "Setup.exe" icon in the folder.3.
Answer the questions which follow.4.

You can now launch PyMOL from the Start menu.

Python−Dependent Installation

If you already have Python installed and wish to use PyMOL with that interpreter, the process is virtually
identical. The only difference is that you need to download a version of PyMOL which matches your desired
Python version in the filename. For example:

pymol−0_90−bin−win32−py22.zip would work with

Python−2.2.2.exe
 available from
http://www.python.org.

MacOS X

Installation 6

http://www.python.org

Recommendations

Mac OS 10.2.x or 10.3.x.•
Dual 2.0+ Ghz G5 system.•
GeForce4 or Radeon 9x00 OpenGL accelerator.•
1 GB of RAM.•

Minimial Requirements

Mac OS X 10.2.x•
Single 833 Mhz G4 system (will run on less, but performance is poor).•
3D OpenGL graphics acceleration.•
512 MB of RAM (1 GB recommended).•

If you use Fink

PyMOL is part of the Fink ports collection.

sudo −s
apt−get pymol install

should be sufficient to get a functioning instance on your system. However, it may not be the most recent
version. We also highly recommend installation of Apple's X Server, which enables PyMOL to access your
accelerated graphics hardware.

If you do not use Fink

Option 1: MacPyMOL

At the request of various Macintosh users, as well as Apple itself, we have created MacPyMOL, a special
native Aqua version of PyMOL for the Macintosh. The latest version of MacPyMOL can be downloaded from
http://delsci.com/macpymol.

However, note that this version is an Incentive Product only available to PyMOL sponsors (but students and
teachers are exempt from this requirement). For more information on MacPyMOL, contact
support@delanoscientific.com.

Option 2: PyMOL X11 Hybrid

This version of PyMOL includes a native Aqua−based OpenGL window and an X11−based Tcl/Tk external
GUI (graphical user interface). Before launching the PyMOL X11 Hybrid, you must have Apple's X11 server
installed and launched. The advantage of using this version is that it is fully compatible with Open−Source
PyMOL, and does not require Fink. However, unlike MacPyMOL, this version does not support direct export
of QuickTime movies. This binary build is free, but not Open−Source.

Download the "pymol−0_XX−bin−osx−x11−hybrid.dmg.gz" compressed disk image.1.
Extract the archive and mount the disk image.2.
Copy the "PyMOLX11Hybrid" folder to the main Applications folder on your hard disk.3.

You can then launch PyMOLX11Hybrid by double−clicking on the PyMOLX11Hybrid icon.

Recommendations 7

http://delsci.com/macpymol

Linux and Unix

System Requirements

3D OpenGL graphics acceleration.•

There are a several different ways to install PyMOL on Linux. Please consult the PyMOL Web Site for
additional information.

Dependency−Free Approaches

These do not require installing any other packages in a privileged location on your system. All you need to do
is download a "tar"−ball appropriate for your system, such as the following:

pymol−0_93−bin−linux−libc6−i386.tgz (for Linux)•
pymol−0_93−bin−irix65−r10k.tgz (for SGI)•
pymol−0_93−bin−solaris8−sun4u.tgz (for Solaris)•

issue the following commands

gunzip < pymol−...−bin−...−.tgz | tar −xvf −
./setup.sh

which will install the program, and then

./pymol.com

will launch PyMOL. You may then want to make a symbol link for this file to ~/bin/pymol for easy
launching.

ln −s $PWD/pymol.com ~/bin/pymol

Install a minimal dependency binary build.

Compile PyMOL from source along with the "ext" dependencies distribution.

Because the installation process is often subject to change, please see the INSTALL file from the current
distribution for detailed instructions. In summary,

Download, extract, configure, and compile the external dependencies.1.
Download and extract the current PyMOL source distribution.2.
Create a symbolic link from the external dependencies to "ext" in the PyMOL directory.3.
Configure compilation by copying and modifying a "Rules.make" from the setup directory to reflect
your system.

4.

Run "make" to build pymol.5.
Create a pymol.com specific to your installation location.6.

You should be able to launch PyMOL by running pymol.com. I usually symbolic link this file into my "bin"
directory as "pymol".

Linux and Unix 8

http://www.pymol.org

Dependency−Based Approaches

You must install the following packages on your system

 python (2.x), tcl (8.x), tk (8.x), libpng (1.x), zlib (1.x),
 glut (3.x), glut−devel (3.x), pmw*, and numeric* (numpy)

(* = not required for RPM packages.)

You then have several choices:

Using RedHat binary packages (RPMs).

rpm −i pymol−0.90−1.rh73.py22.i386.rpm

Using Python's distutils to compile and install PyMOL as a standard Python module.

python setup.py build (as a user)
python setup.py install (as root)
python setup2.py install (as root)

You can now run PyMOL with "./pymol.com".

Using Makefiles with preinstalled system dependencies.

Because the installation process is often subject to change, please see the INSTALL file from the current
distribution for detailed instructions. In summary,

Download and extract the current PyMOL source distribution.1.
Configure PyMOL by copying and modifying a "Rules.make" from the "setup" directory to reflect
your system.

2.

Run "make" to build pymol.3.
Create a pymol.com specific to your installation location.4.

You should be able to launch PyMOL by running pymol.com, and it may be convenient to add a symbolic
link from this file into your "bin" directory as "pymol".

This chapter last updated June 2004 by Warren L. DeLano, Ph.D.

Dependency−Based Approaches 9

Getting Started with Mouse Controls

Launching

Using the Mouse

On Windows:

Click on the Start menu, follow it to Programs (or All Programs on Windows XP), and then release the
mouse on PyMOL.

On Mac OSX (native version)

Double−click on the PyMOL icon in the Applications folder on your main hard drive

Using a Command Line

Various command line options can be included under both Windows and Unix to automatically open files and
launch scripts. See "launching" in the reference manual for more information on these options.

On Windows:

At the command prompt, issue:

c:\program files\delano scientific\pymol\pymolwin.exe

If PyMOL in installed somewhere nonstandard, then use the correct drive letter and path.

On Unix, Linux, and MacOS X (Fink version)

If you installed using using a package such as an RPM, then there is a good chance that "pymol" is already in
your path. If not, then edit pymol.com in the PyMOL distribution and make sure PYMOL_PATH points to
the actual location of the distribution. Enter ./pymol.com to start pymol. You will probably want to create a
link "pymol" from this file in to a "bin" directory in your path so that you can launch the program anywhere
by simply entering "pymol".

Getting Started with Mouse Controls 10

PyMOL's Windows

PyMOL normally starts with two windows: The Viewer Window and the External (Tcl/Tk) GUI Window.

PyMOL's two windows.

GUI is an abbreviation for Graphical User Interface, which usually consists of menus, buttons, text boxes, and
other familiar gadgets. By default, PyMOL actually has two GUI's: (1) an "Internal" GUI which appears
inside the Viewer Window, and (2) an "External" GUI which appears inside of its own window. The reasons
for this are boring and technical, but know that both GUI's will eventually be unified into a single interface in
the future.

The Viewer Window

The PyMOL Viewer represents the heart of the PyMOL system. This is a single OpenGL window where all
3D graphics are displayed and where all direct user interaction with 3D models takes place.

PyMOL Viewer window with Internal GUI enabled (Default).

PyMOL's Windows 11

The Internal GUI contained within this window (right) allows you to perform actions on specific objects and
specific atom selections. From top to bottom, it contains an object list, a mouse button configuration matrix, a
frame indicator, and a set of "VCR"−like controls for working with movies.

The Viewer also contains a command line (bottom) which can be used to enter PyMOL commands. It is also
possible to view PyMOL text output in the Viewer window. you can hit the ESC key anytime to toggle
between text and graphics mode inside the Viewer window.

The PyMOL Viewer can be run all by itself, and it provides the complete capability of the PyMOL core
system. If desired, the Command line and Internal GUI can be disabled. Many tasks can be made easier and
more efficient through use of standard menus and controls. For the most part, such gadgets are currently found
in an External GUI window.

The External GUI Window

The default Tcl/Tk External GUI included with PyMOL.

By default, PyMOL comes with a single external GUI window which provides a standard menu bar, an output
region, a command input field, and a series of buttons. One important advantage of the external GUI window
is that standard "cut and paste" functions for text will only work within the External GUI, and not
within in the PyMOL Viewer. Furthermore, you must use Ctrl−X, Ctrl−C, and Ctrl−V to cut, copy, and
paste because a standard Edit menu has not yet been implemented.

Notes For Developers: External GUIs are the foundation for modularity and customizability in the PyMOL
system. These windows constitute independent processes (or threads) which can control the behavior of
PyMOL, and potentially interact with other programs. They are completely customizable at the Python
scripting level, and mutiple external GUIs can exist at once (within the restrictions of Tkinter and wxPython).

External GUIs communicate with PyMOL through the Python API (Application Programming Interface).
Those of you who want to link up you own programs with PyMOL should generally use a separate external
GUI window to control the interaction, rather than changing internal PyMOL code. That way the programs
will continue to work together even while development on each program proceeds independently. The
internal GUI and all external GUI windows can be enabled and disabled using simple command line options
(see reference for "launching").

The External GUI Window 12

Loading PDB Files

Using the External GUI Menu

The default external GUI provides a standard Open... item in the File menu which you can use to select the
file you wish to open.

Using Commands

 SYNTAX

 load <filename>

 EXAMPLE

 load test/dat/pept.pdb

PyMOL after loading a PDB file.

Manipulating the View

In PyMOL, the mouse is the primary control device, and keyboard modifier keys (SHIFT, CTRL,
SHIFT+CTRL) are used in order to modulate button behavior. A three button mouse is required for
effective use of PyMOL, but common mice such as the Microsoft Intellimouse and Microsoft Wheel Mouse
will work just fine under Windows.

Basic Mouse Control

On mice with a scroll wheel, you can push down on the wheel in order to use it as a middle button.

Loading PDB Files 13

Here is a table of the basic mouse button/keyboard combinations for view manipulation:

Keyboard Modifier Left Button Middle Button Right Button

(none)
Rotate Camera

(Virtual Trackball)
Move Camera in XY
(In Plane of Screen)

Move Camera in Z
(Scale)

Shift Key Move Clipping Planes

Control Keys

Control and Shift Keys Set Origin of Rotation

An abbreviated version of this table, the Mouse Matrix, is always displayed in the Internal GUI, in order to
help you remember which key and mouse button performs which action:

L M R

None RotaMove MovZ

Shft Clip

Ctrl

CtSh Orig

When using PyMOL on a laptop, it may be necessary to attach an external mouse or reassign the particular
mouse controls you plan to use onto the reduced set of buttons that you have available internally (see
reference on the "button" command).

Virtual Trackball Rotation

Virtual Trackball Rotation 14

PyMOL's Virtual Trackball.

Virtual trackball rotation works as if there is an invisible ball in the center of the scene. When you click and
drag on the screen, it is as if you put your finger on the sphere and rotated it in approximately the same
manner. If you click outside the sphere, then you get rotation about the Z−axis only. Generally, the view will
be easiest to control by either clicking in the center of the scene and moving outwards (mostly XY−rotation),
or by clicking and draging around the edge of the screen and moving in a circular fashion (Z−rotation).

Virtual Trackball Rotation 15

Moving Clipping Planes

PyMOL's clipping plane control is somewhat unusual and may take a few minutes to get used to. Instead of
having separate controls for the front and back clipping planes, controls are combined into a single mode
where up−down mouse motion moves the front (near) clipping plane and left−right mouse motion
controls the back (far) clipping plane.

Control of clipping planes.

The advantage of the PyMOL clipping plane control is that tedious tandem manipulations of the clipping
planes now becomes easy through the diagonal motions shown below.

Changing the visible "wedge" by moving clipping planes in tandem.

You can also use the "clip" command to control the clipping planes.

Changing the Origin of Rotation

When visualizing molecules, it is frequently necessary to change the origin of rotation so that you can inspect
a particular region of the molecule. The fastest way to do this in PyMOL is to Control−Shift−Middle−Click
on a visible atom in the scene.

Moving Clipping Planes 16

Getting Comfortable

At this point, we recommend that you spend five or ten minutes getting comfortable with the controls
described in this chapter. Specifically, you should be able to accomplish the following tasks:

Load a PDB file into PyMOL.1.
Rotate, translate, and zoom the camera.2.
Adjust the front and back clipping planes to clearly view a slice of the molecule.3.
Change the origin of rotation about any particular atom of interest.4.

Getting Comfortable 17

Getting Started with Commands
This section steps through a typical PyMOL session, introducing typed commands and describing how
PyMOL responds to them. The details of command syntax are in the section titled "PyMOL Command
Language."

The PyMOL language is case−sensitive, but upper case is not used in the current package. So just remember
to type all your commands in lower case.

Recording Your Work (Optional)

While you are learning PyMOL or doing complex projects, you may want to keep a record of all the
commands you give in a plain text log−file that you can read and edit. To open a log−file, type the command
log_open followed by a file−name:

SYNTAX

 log_open log−file−name

EXAMPLE

PyMOL> log_open log1.pml

All your commands, typed or clicked, will be recorded in the log−file. You should give your log−file−name
the extension ".pml" so you can load the file as a script, to repeat your commands in a new session (see the
subsection titled "Sessions and Scripts" below).

To stop recording your commands, type log_close. If you don't type log_close before you exit PyMOL, your
log−file will still be saved to disk.

If you just want to save the current state of your PyMOL work without concern for the steps you took and the
commands you gave, you can create a session−file (see "Sessions and Scripts").

Loading Data

Next you need to input your data from a file, say atomic coordinates in PDB format:

SYNTAX

 load data−file−name

EXAMPLE

PyMOL> load $PYMOL_PATH/test/dat/pept.pdb

Given this command, PyMOL will open and read the file "pept.pdb," create and name a corresponding object,
display a representation of the object in the viewer, and add the object's name to the control panel.

By default, PyMOL names the object after the file it read. You can assign a different name to the object by
typing the name in the command line:

SYNTAX

Getting Started with Commands 18

 load data−file−name, object−name

EXAMPLES

PyMOL> load $PYMOL_PATH/test/dat/pept.pdb # The object is named "pept".
 # PyMOL doesn't use
 # the file−name extension
 # ".pdb" in the object−name.

PyMOL> load $PYMOL_PATH/test/dat/pept.pdb, test # The object is named "test".

(Note that "#" is a comment character, so anything you type to the right of "#" in a command line is not
interpreted by PyMOL.)

The command for loading a file follows typical PyMOL syntax. load is a keyword; it calls PyMOL to perform
a certain function. data−file−name and object−name are arguments to load. These arguments tell PyMOL
what file to load and what to name it, but in general, arguments to keywords just supply information that
PyMOL needs to carry out commands.

Manipulating Objects

After PyMOL creates an object, you can manipulate it in the view window and control panel with your mouse,
and also by typing commands. For example, you can change from the default representation, called lines, to
the more hefty sticks. First get rid of the lines and then show the sticks:

SYNTAX

 hide representation

 show representation

EXAMPLES

PyMOL> hide lines # The object shown in lines disappears from view.

PyMOL> show sticks # The object is represented as sticks in the viewer.

Other representations are cartoons, ribbons, dots, spheres, surfaces, and meshes (See the Section titled
"Representations").

Atom Selections

If you want to manipulate a subset of the atoms and bonds in a molecule, you can use atom selections.
PyMOL is pretty sophisticated when it comes to selecting, grouping and naming groups of atoms. For
example, you can select particular residues or atoms in a binding pocket, or a hydrophobic patch, or all the
alanines in a helix, and so on. The Section titled "PyMOL Command Language" gives the details for selecting
interesting groups of atoms.

You can use a selection just once, or you can name it to make it easier to use again later. For example, you can
zoom in on a selection "on the fly:"

SYNTAX

 zoom selection−expression # Select the atoms just for zooming.

Manipulating Objects 19

EXAMPLE

PyMOL> zoom resi 1−10 # The selector resi
 # chooses amino acid residues
 # given by the PDB sequence number
 # identifier "1−10."

Selection−expressions range from single words to long complicated expressions. An object−name may be a
selection−expression. The default selection−expression is all, which refers to all the atoms that are currently
loaded. If a selection−expression is missing, PyMOL will apply the command to all. We'll keep our
selection−expressions short in this section.

If you name the selection, you will be able to manipulate it any number of times. Object and selection names
may include the upper or lower case characters (A/a to Z/z), numerals (0 to 9), and the underscore character
(_). Characters to avoid include:

! @ # $ % ^ &* () ' " [] { } \ | ~ ` <> . ? /

First, name the selection:

SYNTAX

 select selection−name, selection−expression

EXAMPLES

PyMOL> select akeeper, resi 1−10 # Select the residues and name them "akeeper."

Then use it:

SYNTAX

 zoom selection−name

 hide representation, selection−name

 show representation, selection−name

EXAMPLES

PyMOL> zoom akeeper # Zoom in on them in the viewer.

PyMOL> hide everything, akeeper # Hide their representation in the viewer.

PyMOL> show spheres, akeeper # Show them in a different representation,
 # spheres, this time.

When you create a selection−name, PyMOL puts it in the control panel so you can apply control panel
functions to the selection using your mouse (See the section titled "PyMOL Command Language").

Named−selections such as "akeeper" are manipulated like PyMOL objects, but objects and named−selections
are fundamentally different. PyMOL creates an object−name to locate data when you load a data file. Making
selections is a way of pointing to a subset of that data. To distinguish selection−names from object−names,
selection−names are shown inside parentheses in the control panel.

Manipulating Objects 20

When you delete a selection−name, the data are still found under the object−name, but the data are no longer
organized as the selection. In contrast, after you delete an object, you must reload the data to have access to it
again.

SYNTAX

 delete selection−name

 delete object−name

EXAMPLES

PyMOL> delete akeeper # "akeeper" is gone, but the object remains.

PyMOL> delete pept # The atoms and bonds in "pept" are gone.

Coloring Objects and Selections

You can apply various colors to selections and objects using typed commands. Predefined color−names are
listed under the settings/colors pull−down menu. Many of them can be chosen from the control panel. See the
section titled "Settings" to find out how to define more colors.

SYNTAX

 color color−name # All the representations of
 # loaded objects are colored.

 color color−name, selection−expression # The representation of
 # the selection is colored.

EXAMPLES

PyMOL> color white # Everything turns white.
 # This looks fine on the
 # default black background,
 # but causes disappearance
 # if you've changed the background to white.

PyMOL> color orange, pept # Remember that "pept" is our object−name,
 # so the entire object is colored orange.

PyMOL> color green, resi 50+54+58 # The representation of
 # residues numbered 50, 54 and 58
 # is colored green.

PyMOL> color yellow, resi 60−90 # The representation of
 # residues numbered 60 through 90
 # is colored yellow.

PyMOL> color blue, akeeper # Residues numbered 1−10,
 # which were collected in
 # the named selection "akeeper,"
 # are colored blue.

PyMOL> color red, ss h # The representations of
 # helical residues
 # are colored red.

PyMOL> color yellow, ss s # The representations of

Coloring Objects and Selections 21

 # beta sheet residues
 # are colored yellow.

PyMOL> color green, ss l+"" # The representations of
 # loop and unassigned residues
 # are colored green.

In the last three examples, the selector ss chooses secondary structures specified by h for helix, s for beta
sheet strand and l+"" for loops and unspecified structures.

Turning Objects and Selections On and Off

PyMOL can hold several objects in memory at the same time. The commands disable and enable allow you
to eliminate representations of objects from the viewer while still controlling their properties with commands.

SYNTAX

 enable object−name

EXAMPLE

PyMOL> load $PYMOL_PATH/test/dat/fc.pdb
PyMOL> load $PYMOL_PATH/test/dat/pept.pdb

PyMOL> disable pept # All representations of "pept"
 # are removed from view.

PyMOL> color yellow, name c+o+n+ca # Backbone atoms in both "fc"
 # and "pept" are colored yellow,
 # but "pept" atoms
 # are still not visible.

PyMOL> enable pept # "pept" atoms are visible and
 # its backbone atoms are yellow.

You can also use the disable command to get rid of the pink dots that identify the last−named selection in the
viewer:

SYNTAX

 enable selection−name

EXAMPLE

PyMOL> select bb, name c+o+n+ca # Atoms included in the
 # named−selection are indicated
 # with pink dots in the viewer.

PyMOL> disable bb # The pink dots disappear,
 # but the named selection "bb"
 # is still visible.

PyMOL> color red, bb # You can still manipulate "bb."

You can still operate on the representations of objects that are disabled, even with the commands show and
hide. The results will be apparent when you subsequently enable the object.

Turning Objects and Selections On and Off 22

Changing Your Point of View

Dragging on a molecule with the mouse is often the easiest way to manouver, but typed commands such as
zoom and orient give you a different form of control, allowing computations to direct the view. zoom, as the
name suggests, brings an object or selection close up in the center of the field of view. If the object or
selection doesn't fit in the current view, the view opens out to include it. If it is just a small part of the current
view, the view closes in to fill more of the screen with it.

SYNTAX

 zoom selection−expression # The "camera" moves close
 # to the selection so it fills the viewer,
 # or moves further away to include
 # all of the selection in the viewer

orient is a useful command when you want a fresh start in viewing the molecule. It aligns the object or
selection so its largest dimension is shown horizontally, and its second largest dimension is shown vertically.

SYNTAX

 orient selection−expression # The selection is aligned
 # for maximum visibility in the viewer.

You can store orientations and recall them later in your PyMOL session using the command view. Storing a
view only saves the viewpoint on the objects in the viewer. It does not save their representation. To store a
view for later in the session, you need to "key" it, that is, to give a name or number as an argument to the
command view. A second argument tells PyMOL whether you want it to store the view or recall it.

SYNTAX

 view key, action # The possible actions are store and recall.

EXAMPLES

PyMOL> view v1, store # The current view is named "v1" and stored.

PyMOL> view v1, recall # The view keyed "v1" is restored.

PyMOL> view v1 # recall is the default argument to view,
 # so this also recalls "v1."

The keyword view only stores an orientation for the duration of the current PyMOL session. The next section
gives the recipe for saving and restoring views in different PyMOL sessions.

Saving Your Work

PyMOL saves your work in f kinds of processes: (1) Before you give a series of commands, you can initiate
the process of logging your commands into plain text log−files that can later be used as scripts. (2) At any
point in a PyMOL session you can save the memory state of the program by creating a session file that can
later be loaded to restore that memory state. (3) You can write a graphics file to store the image you have
created in the viewer for sharing or publication.

 Changing Your Point of View 23

Scripts and Log Files

A PyMOL script is just a text file, such as a log−file, containing typed PyMOL commands separated by
carriage returns. When a script is loaded into PyMOL the commands it contains are executed. PyMOL expects
scripts to have ".pml" file−name extensions (this is not strictly required, but it is good practice).

You can use log−files as scripts, and you can create scripts in a text editor such as emacs, jot, or notepad. It's
often useful to keep a text editor open in a separate window while using PyMOL. Commands can then be cut
and pasted between the two programs.

You can open a new log−file by typing log_open log−file−name, or by clicking on "log" under the "File"
menu and naming the log−file in the dialog box. You can also append commands to an existing log−file by
choosing "append" or "resume" in the "File" menu. When you "resume" rather than "append," the existing
log−file is first loaded as a script, and then subsequent commands are written to it.

Once you have opened a log−file in any of these ways, PyMOL will write and save all your commands,
whether they are typed or given by clicking on the buttons in the GUI.

However, to store the orientation of a molecule into a log−file, you need to give the command get_view (type
it or use the GUI button). You may find it convenient to get_view several times in a PyMOL session, and then
edit the log−file to select the most useful views.

Scripts can be executed in several ways. Under Windows, scripts can be run in a new PyMOL session by
double clicking on the script's icon. Alternatively, you can run a script using the "File" menu's "Run" option.
PyMOL also understands "@" as the typed command that loads a script:

SYNTAX

 @script−file−name

EXAMPLE

PyMOL> @my_script.pml

You can also include the script−file−name when launching PyMOL from a command line:

SYNTAX

 pymol script−file−name

EXAMPLE (Windows)

C:\> pymol.exe my_script.pml

EXAMPLE (Unix)

unix> ./pymol.com my_script.pml

png Files

Once you are satisfied with the representation and orientation of your molecule, you may want to save the
image in a graphics file. Before you do that, you can improve the quality of the graphics by switching from
PyMOL's fast default graphics engine, OpenGL, to its ray tracer. The ray tracer is slower, but produces higher

Scripts and Log Files 24

quality renderings for display and publication. Ray tracing shows how light is reflected and how shadows fall
in a three−dimensional world. Ray tracing may take some minutes for a large complex object. The keyword
ray calls PyMOL's raytracer to redraw and display the image in the view window (See the section titled "Ray
Tracing" for more details).

To save an image to a file, raytraced or not, use the "Save Image" option in the "File" menu or type the png
command:

SYNTAX

 png file−name

EXAMPLE

PyMOL> png $PYMOL_PATH/pep # The file−name extension ".jpeg" is
 # added. The image file "pep.jpeg" is stored
 # in a path below the PyMOL installation.

The PNG file format is directly readable by PowerPoint. It can be converted into other formats using a
package like ImageMagick.

Session Files

If you want to be able to return to the current state of PyMOL, then you can create a session−file (Choose
"Save Session" in the "File" menu and respond to the dialog box by naming the file with a ".pse" file−name
extension). This utility works like the "Save" utility in a word processing program. A PyMOL session−file is a
symbolic record of the state of PyMOL's memory, including the the objects that have been loaded or created,
the named−selections that have been created, and the display in the viewer.

When you open the saved session−file, PyMOL's memory returns to the state that was saved. Because a
session−file represents a PyMOL memory state, opening one means that you are eliminating everything that
you currently have in PyMOL's memory, and replacing it with the memory state from the session−file.

A session−file differs from a log−file or a script in a number of ways. You have to open a log−file before you
give the commands you want to save, but a session−file can be created at any point. A session−file is invoked
by choosing "open" under the file menu, while a log−file is "run" as a script. Also, you can't write or edit
session−files, as you can log−files and scripts.

It's a good idea to create session−files at strategic points in PyMOL sessions, for example, when you decide to
explore one of several options. In this way, session−files can be used to replace an "undo" utility, which
PyMOL lacks. You can store any number of PyMOL states in successive session−files, and revert to them,
effectively "undo"−ing the work you did since creating the session−file.

Command−Line Shortcuts

Since almost nobody likes to type, PyMOL's command−line interface includes several "shortcut" features
designed to reduce typing. If you are a unix user, you will recognize the similarity with features found in tcsh
or bash.

Session Files 25

Command Completion using TAB

If you type the first few characters of a command and then hit TAB, PyMOL will either complete the
command or print out a list of which commands match the command.

EXAMPLE

PyMOL> sel

 # hitting TAB will produce

PyMOL> select

If you hit the TAB key on a blank command line, PyMOL will output a list of its commands.

Filename Completion using TAB

Some of the files you need to load into PyMOL may have long paths and filenames. PyMOL makes it easier
to load such files by automatically completing unambiguous paths and filenames when you hit the TAB key.
For instance,

EXAMPLE

PyMOL> load cry

 # If "crystal.pdb" exists in the current directory, hitting TAB will generate

PyMOL> load cystal.pdb

If there is some ambiguity in the filename, PyMOL will complete the name up to the point of ambiguity and
then print out the matching files in the directory.

Automatic Inferences

There are a small number of "fixed string" arguments to PyMOL commands. For example, in

PyMOL> show sticks

"sticks" is a fixed string argument to show. Because there is only a small set of such arguments to show,
PyMOL will infer your meaning even if you only provide it with a few letters. For example

PyMOL> show st

works just as well.

Keywords are also inferred in this manner, so

PyMOL> sh st

works too, as long as show is the PyMOL only command starting with "sh".

Command Completion using TAB 26

NOTE: PyMOL's command language continues to grow and develop, so it is important to use full−length
commands and string arguments in scripts. Otherwise, you could not be sure that a later command or
argument would not cause your abbreviation to become ambiguous. For example, "sh st" would no longer
work if a shutoff command were added to the PyMOL language.

Other Typed Commands and Help

This "Getting Started" section used the most frequent PyMOL commands in very brief examples. The section
titled "Simple Examples" shows other commands that combine representations, selections and property
changes. More complicated examples appear in the section titled "Cookbook and Complex Examples," and a
comprehensive listing of typed commands appears in the section titled "Command and API Reference."

To see a list of the keyword commands that are available in PyMOL on your computer screen, type help and
"enter" (Typing TAB and "enter" will work too). Add the keyword if you want help on a particular command:

SYNTAX

 help keyword

EXAMPLE

PyMOL> help load

PyMOL responds by displaying the manual page that discribes the command in the PyMOL viewer.
Command line completion works inside of help, so if you don't remember the full keyword, type help, the
first character or so of the keyword, and hit TAB. Python will display a list of possible help topics.

Click inside the viewer and hit escape to toggle back and forth between the display of the manual page or the
list of commands and the molecules you have loaded in PyMOL.

All the keywords that PyMOL understands are listed alphabetically and described in the "Reference" section.
PyMOL commands run on top of the Python programming language and may contain Python statements.
After you type in a command and hit return, PyMOL will check whether the first word is one of its keywords
(or if it can be extended into a keyword). If not, PyMOL will pass the command on to the Python interpreter.
PyMOL will return a Python error message if neither a PyMOL nor a Python keyword is recognized.

 Other Typed Commands and Help 27

Command Syntax and Atom Selections

Syntax

A typed PyMOL command always starts with a keyword that calls PyMOL to execute an action. It ends with a
carriage return ("enter" on your keyboard).

The simplest commands consist of a keyword alone. For example, typing quit will end your PyMOL session.
The quit command never takes an argument.

Many commands have default arguments, so you can type the keyword alone and PyMOL will supply the rest.
For example, the default argument to zoom is the selection−expression all:

EXAMPLE

PyMOL> zoom # All visible representations
 # are included in the view.

For some keywords, certain arguments are required and others are supplied by default. For example, the
keyword color requires one argument, the color−name. As for zoom, the default selection−expression is all:

SYNTAX

 color color−name

 color color−name, selection−expression

EXAMPLES

PyMOL> color red # All the representations
 # are colored red.

PyMOL> color red, name ca # Only the representations of
 # atoms named c−alpha are colored red.

When you type a command that has more than one argument, color color−name, selection−expression in this
case, a comma must separate the arguments.

Selection−expressions are an essential type of keyword argument. They can be simple or complex, with
several different kinds of syntax.

Selection−expressions

Selection−expressions stand for lists of atoms in arguments that are subject to PyMOL commands. You can
name the selections to facilitate their re−use, or you can specify them anonymously (without names). Object
and selection names may include the upper or lower case characters A/a to Z/z, numerals 0 to 9, and the
underscore character (_). Characters to avoid include:

! @ # $ % ^ &* () ' " [] { } \ | ~ ` <> . ? /

Selection−expressions describe the class of atoms you are referencing. Most of them require identifiers to
complete the specification. For example, the selector resi references biopolymer residues by sequence

Command Syntax and Atom Selections 28

number, and the identifier gives the number. The selector name references atoms according to the names
described in the PDB, and the identifier gives the name (ca for alpha carbons, cb for beta carbons, etc). A
handful of selection−expressions don't require identifiers, but most do.

PyMOL uses several logical operators to increase the generality or specificity of selection−expressions.
Logical combinations of selectors can get complex, so PyMOL accepts short forms and macros that express
them with a minimum of keystrokes. This section describes named−selections, and then gives the syntax for
making selections in a progression from simple one−word selectors to complex combinations of selectors,
using macros and short forms.

Named Atom Selections

Atom selections can be named for repeated use by using the select command:

SYNTAX

 select selection−name, selection−expression
 # The selection−name and
 # the selection−expression
 # are both arguments to select
 # so they are separated by a comma.

EXAMPLE

PyMOL> select bb, name c+o+n+ca # Create an atom selection named "bb"
 # including all atoms named
 # "C","O","N", or "CA";

PyMOL> color red, bb # color the selection red,
PyMOL> hide lines, bb # hide the line representation,
PyMOL> show sticks, bb # show it using the stick representation,
PyMOL> zoom bb # and zoom in on it.

In this case, the selection−expression is the property selector name, which takes the list of identifiers
ca+c+n+o to complete the specification. Property selectors and their identifiers are discussed below.

Named atom selections appear in the PyMOL names list in the control panel. They are distinguished from
objects by a surrounding set of parentheses. The control panel options available under the diamond menu
differ between objects and atom−selections, because objects and named selections play slightly different roles
in PyMOL. Named selections are pointers to subsets of data that are found under an object name. After an
object is deleted, the data are no longer available, unless you reload the object. Any named selections that
refer to atoms in that object will no longer work. But when named selections are deleted, the data are still
available under the object name. Disabling objects eliminates them from the viewer, but disabling
named−selections just turns off the pink dots that highlight them in the viewer.

Atom−selections, named or not, can span multiple objects:

EXAMPLE

PyMOL> load $PYMOL_PATH/test/dat/fc.pdb
PyMOL> load $PYMOL_PATH/test/dat/pept.pdb

PyMOL> select alpha_c, name ca # The named selection "alpha_c"
 # is created −− it includes atoms
 # in both "fc" and "pept" objects.

PyMOL> color red, name ca # "CA" atoms in both objects

Named Atom Selections 29

 # are colored red.

Named selections will continue working after you have made changes to a molecular structure:

EXAMPLE

PyMOL> load $PYMOL_PATH/test/dat/pept.pdb
PyMOL> select bb, name c+o+n+ca # The named selection "bb"

 # is created.

PyMOL> count_atoms bb # PyMOL counts 52 atoms in "bb."

PyMOL> remove resi 5 # All atoms in residue 5 are removed
 # from the object "pept."

PyMOL> count_atoms bb # Now PyMOL counts
 # the remaining 48 atoms in "bb."

Named selections are static. Only atoms that exist at the time the selection is defined are included in the
selection, even if atoms which are loaded subsequently fall within the selection criterion:

EXAMPLE

PyMOL> load $PYMOL_PATH/test/dat/pept.pdb

PyMOL> select static_demo, pept # The named selection "static_demo"
 # is created to reference all atoms.

PyMOL> count_atoms static_demo # PyMOL counts 107 atoms
 # in "static_demo."

PyMOL> h_add # PyMol adds hydrogens in
 # the appropriate places

PyMOL> count_atoms static_demo # PyMOL still counts 107 atoms
 # in "static_demo,"

PyMOL> count_atoms # even though it counts 200 atoms
 # in "pept."

Named selections can also be used in subsequent atom selections:

EXAMPLE

PyMOL> select bb, name c+o+n+ca # An atom selection named "bb"
 # is made, consisting of all
 # atoms named "C","O","N", or "CA."

PyMOL> select c_beta_bb, bb or name cb
 # An atom selection named "c_beta_bb"
 # is made, consisting of
 # all atoms named "C", "O", "N", "CA" or "CB."

Note that the word "or" is used to select all atoms in the two groups, "bb" and "cb." The word "and" would
have selected no atoms because it is interpreted in its boolean logical sense, not its natural language sense. See
the subsection on "Selection Algebra" below.

Named Atom Selections 30

Single−word Selectors

The very simplest selection−expressions are single−word selectors. These selectors do not take identifiers;
they are complete by themselves.

Single Word
Selector

Short Form
Selector

Description

all * All atoms currently loaded into PyMOL

none none No atoms (empty selection)

hydro h. All hydrogen atoms currently loaded into PyMOL

hetatm het All atoms loaded from Protein Data Bank HETATM records

visible v. All atoms in enabled objects with at least one visible representation

present pr.
All atoms with defined coordinates in the current state
(used in creating movies)

The selector none won't come up much when you are typing commands directly into PyMOL, but it is useful
in programming scripts.

As the table shows, many single−word selectors have short forms to save on typing. Some short forms must
be followed by a period and a space, in order to delimit the word. Short forms and long forms have the same
effect, so choose the form that suits you:

EXAMPLES

PyMOL> color blue, all # It all turns blue.
PyMOL> color blue, *

PyMOL> hide hydro # Representations of all
PyMOL> hide h. # hydrogen atoms are hidden.

PyMOL> show spheres, hetatom # All the atoms defined as HETATOMS
PyMOL> show spheres, het # in the PDB input file

 # are represented as spheres.

Property Selectors

PyMOL reads data files written in PDB, MOL/SDF, Macromodel, ChemPy Model, and Tinker XYZ formats.
Some of the data fields in these formats allow PyMOL to assign properties to atoms. You can group and select
atoms according to these properties using property selectors and identifiers: the selectors correspond to the
fields in the data files, and the identifiers correspond to the target words to match, or the target numbers to
compare.

The items in a list of identifiers are separated by plus signs (+) only. Do not add spaces within a list of
identifiers. The selector resi takes (+)−separated lists of identifiers, as in

EXAMPLE

PyMOL> select nterm, resi 1+2+3

or, alternatively, it may take a range given with a dash:

EXAMPLE

Single−word Selectors 31

PyMOL> select nterm, resi 1−3

However, you will get an error message if you try to combine a list and a range in an identifier to a resi as in
"select mistake, resi 1−3+6."

The identifier for a blank field in an input file is and empty pair of quotes:

EXAMPLE

PyMOL> select unstruct, ss "" # A named selection is created
 # to contain all atoms that are not assigned
 # a secondary structure.

Most property selectors select matches to their identifiers:

Matching
Property
Selector

Short Form
Selector

Identifier
and Example

symbol e.

chemical−symbol−list
list of 1− or 2−letter chemical symbols from the
periodic table

PyMOL> select polar, symbol o+n

name n.

atom−name−list
list of up to 4−letter codes for atoms in proteins or
nucleic acids

PyMOL> select carbons, name ca+cb+cg+cd

resn r.

residue−name−list
list of 3−letter codes for amino acids

PyMOL> select aas, resn asp+glu+asn+gln

or list of up to 2−letter codes for nucleic acids

PyMOL> select bases, resn a+g

resi i.

residue−identifier−list
list of up to 4−digit residue numbers

PyMOL> select mults10, resi 1+10+100+1000

residue−identifier−range

PyMOL> select nterm, resi 1−10

alt alt

alternate−conformation−identifier−list
list of single letters

PyMOL> select altconf, alt a+""

chain c. chain−identifier−list
list of single letters or sometimes numbers

Single−word Selectors 32

PyMOL> select firstch, chain a

segi s.

segment−identifier−list
list of up to 4 letter identifiers

PyMOL> select ligand, segi lig

flag f.

flag−number
a single integer from 0 to 31

PyMOL> select f1, flag 0

 numeric_type nt.

type−number
a single integer

PyMOL> select type1, nt. 5

text_type tt.

type−string
a list of up to 4 letter codes

PyMOL> select subset, text_type HA+HC

id id

external−index−number
a single integer

PyMOL> select idno, id 23

index idx.

internal−index−number
a single integer

PyMOL> select intid, index 11

ss ss

secondary−structure−type
list of single letters

PyMOL> select allstrs, ss h+s+l+""

Other property selectors select by comparison to numeric identifiers:

Numeric
Selector

Short Form
Argument
&Example

b b

comparison−operator b−factor−value
a real number

PyMOL> select fuzzy, b > 10

q q

comparison−operator occupancy−value
a real number

PyMOL> select lowcharges, q <0.50

 formal_charge fc.

comparison−operator formal charge−value
an integer

PyMOL> select doubles, fc. = −1

 partial_charge pc.

comparison−operator partial charge−value
a real number

PyMOL> select hicharges, pc. > 1

Single−word Selectors 33

Details of the atom and residue name formats can be found in the official guide to PDB file formats,
http://www.rcsb.org/pdb/docs/format/pdbguide2.2/guide2.2_frame.html.

Selection Algebra

Selections can be made more precise or inclusive by combining them with logical operators, including the
boolean and, or and not. The boolean and selects only those items that have both (or all) of the named
properties, and the boolean or selects items that have either (or any) of them. Venn diagrams show that and
selects the areas of overlap, while or selects both areas.

Operators:

Selection operators and modifiers are listed below. The dummy variables s1 and s2 stand for
selection−expressions such as "chain a" or "hydro."

Operator
Short
form

Effect

not s1 ! s1
Selects atoms that are not included in s1

PyMOL> select sidechains, ! bb

s1 and s2 s1 & s2
Selects atoms included in both s1 and s2

PyMOL> select far_bb, bb &farfrm_ten

s1 or s2 s1 | s2
Selects atoms included in either s1 or s2

PyMOL> select all_prot, bb | sidechain

s1 in s2 s1 in s2

Selects atoms in s1 whose identifiers
name, resi, resn, chain and segi all match atoms in s2

PyMOL> select same_atms, pept in prot

s1 like s2 s1 l. s2

Selects atoms in s1 whose identifiers
name and resi match atoms in s2

PyMOL> select similar_atms, pept like prot

s1 gap X s1 gap X

Selects all atoms whose van der Waals radii are separated from the van der
Waals radii of s1 by a minimum of X Angstroms.

PyMOL> select farfrm_ten, resi 10 gap 5

s1 around X s1 a. X
Selects atoms with centers within X Angstroms of the center of any atom in s1

PyMOL> select near_ten, resi 10 around 5

s1 expand X s1 e. X
Expands s1 by all atoms within X Angstroms of the center of any atom in s1

PyMOL> select near_ten_x, near10 expand 3

Selection Algebra 34

 s1 within X of
s2

 s1 w. X
of s2

Selects atoms in s1 that are within X Angstroms of the s2

PyMOL> select bbnearten, bb w. 4 of resi 10

byres s1 br. s1
Expands selection to complete residues

PyMOL> select complete_res, br. bbnear10

byobject s1 bo. s1
Expands selection to complete objects

PyMOL> select near_obj, bo. near_res

neighbor s1 nbr. s1
Selects atoms directly bonded to s1

PyMOL> select vicinos, neighbor resi 10

Logical selections can be combined. For example, you might select atoms that are part of chain a, but not
residue number 125:

EXAMPLE

PyMOL> select chain a and (not resi 125) # selects atoms that are part of
 # chain a, but not
 # residue number 125.

PyMOL> select (name cb or name cg1 or name cg2) and chain A # These two
 # selections are

PyMOL> select name cb+cg1+cg2 and chain A # equivalent.
 # select c−beta's,
 # c−gamma−1's and
 # c−gamma−2's
 # that are
 # in chain A.

Like the results of groups of arithmetic operations, the results of groups of logical operations depend on which
operation is performed first. They have an order of precedence. To ensure that the operations are performed in
the order you have in mind, use parentheses:

 byres ((chain a or (chain b and (not resi 125))) around 5)

PyMOL will expand its logical selection out from the innermost parentheses.

Atom Selection Macros

Macros make it possible to represent a long atom selection phrase such as

PyMOL> select pept and segi lig and chain b and resi 142 and name ca

in a more compact form:

PyMOL> select /pept/lig/b/142/ca

An atom selection macro uses slashes to define fields corresponding to identifiers. The macro is used to select
atoms using the boolean "and," that is, the selected atoms must have all the matching identifiers:

 /object−name/segi−identifier/chain−identifier/resi−identifier/name−identifier

Atom Selection Macros 35

These identifiers form a hierarchy from the object−name at the top, down to the name−identifier at the
bottom. PyMOL has to be able to recognize the macro as one word, so no spaces are allowed within it.

Macros come in two flavors: those that begin with a slash and those that don't. The presence or absence of a
slash at the beginning of the macro determines how it is interpreted. If the macro begins with a slash, PyMOL
expects to find the fields starting from the top of the hierarchy: the first field to the right of the slash is
interpreted as an object−name; the second field as an identifier to segi; the third as an identifier to chain, and
so on. It may take any of the following forms:

 /object−name/segi−identifier/chain−identifier/resi−identifier/name−identifier
 /object−name/segi−identifier/chain−identifier/resi−identifier
 /object−name/segi−identifier/chain−identifier
 /object−name/segi−identifier
 /object−name

EXAMPLES

PyMOL> zoom /pept
PyMOL> show spheres, /pept/lig/
PyMOL> show cartoon, /pept/lig/a
PyMOL> color pink, /pept/lig/a/10
PyMOL> color yellow, /pept/lig/a/10/ca

If the macro does not begin with a slash, it is interpreted differently. In this case, PyMOL expects to find the
fields ending with the bottom of the hierarchy. Macros that don't start with a slash may take the following
forms:

resi−identifier/name−identifier
chain−identifier/resi−identifier/name−identifier

segi−identifier/chain−identifier/resi−identifier/name−identifier
object−name/segi−identifier/chain−identifier/resi−identifier/name−identifier

EXAMPLES

PyMOL> zoom 10/cb
PyMOL> show spheres, a/10−12/ca
PyMOL> show cartoon, lig/b/6+8/c+o
PyMOL> color pink, pept/enz/c/3/n

You can also omit fields between slashes. Omitted fields will be interpreted as wildcards, as in the following
forms:

resi−identifier/
resi−identifier/name−identifier
chain−identifier//
object−name//chain−identifier

EXAMPLES

PyMOL> zoom 142/ # Residue 142 fills the viewer.

PyMOL> show spheres, 156/ca # The alpha carbon of residue 156
 # is shown as a sphere

PyMOL> show cartoon, a// # Chain "A" is shown as a cartoon.

PyMOL> color pink, pept//b # Chain "B" in object "pept"
 # is colored pink.

Atom Selection Macros 36

Selection macros must contain at least one forward slash in order to distinguish them from other words in the
selection language. Being words, they must not contain any spaces. When using macros, it is also important to
understand that they are converted into long form before being submitted to the selection engine. This can
help in the interpretation of error messages.

Calling Python from within PyMOL

Single−line Python statements can be issued directly within PyMOL. For example:

PyMOL> print 1 + 2
3

Full access is available to standard Python library functions, and you can assign results to symbols.

PyMOL>import time
PyMOL>now = time.time()
PyMOL>print now
1052982734.94

Multi−line blocks of Python can be included within PyMOL command scripts provided that a backslash ('\') is
used for continuation on all but the final line.

PyMOL> for a in range(1,6): \
PyMOL> b = 6 − a \
PyMOL> print a, b
1 5
2 4
3 3
4 2
5 1

Calling Python from within PyMOL 37

Cartoon Representations

Background

Accessibility

Cartoon ribbons in PyMOL rival those of the popular Molscript/Raster3D packages, but PyMOL makes
creating high quality images much easier. While PyMOL can read Molscript output directly (see the chapter
on Molscript), this is no longer necessary or as convenient as utilizing PyMOL's built−in cartoon ribbon
capability:

PyMOL built−in ribbons "molauto −nice ... | molscript −r > ..."

Molscript's cartoons are slightly more ideal, but PyMOL comes pretty darn close!

Note that all of the images in this section were colored using the rainbow feature (Color pop−up menu) and
ray−traced with antialising enabled.

Pretty and Correct

One of the advantages of PyMOL's cartoon ribbon facility is that it is easy to switch between "smoothed"
versions of protein secondary structure, and "correct" renditions which portray actual main chain coordinates.
Although cartoons are often used solely to represent protein structures in a schematic sense, sometimes it is
desirable to combine a schematic overall picture with atomic resolution in one particular location. However,
unless the cartoon track properly with alpha−carbon positions, the resulting figures will look a little silly:

Cartoon Representations 38

In the above image, the side chains are floating off into space. Disabling "flat sheets" from the Cartoons Menu
or issuing the command

 set cartoon_flat_sheets, 0

will make the beta strands follow the true path of the backbone through space and give a more accurate
rendition of the structure.

The appearance of a cartoon over the entire molecule will be substantially different when all smoothing
features are turned off. For instance, with smoothing enabled:

 set cartoon_flat_sheets, 1
 set cartoon_smooth_loops, 1

Cartoon Representations 39

the image differs substantially from:

 set cartoon_flat_sheets, 0
 set cartoon_smooth_loops, 0

which more accurately reflects the true path of the peptide backbone:

Cartoon Representations 40

To facilitate beautiful imagery, smoothing is enabled by default (just like Molscript) [NOTE: THIS MAY
CHANGE BEFORE VERSION 1.0] . Just be sure to turn it off when you want to study structures at atomic
resolution (remember, real life is a bit more complicated than what you see in cartoons!).

Customization

Cartoon Types

Best results will be obtained when secondary structure information has been defined for each residue in the
molecule. Under these conditions, PyMOL will do extra processing to insure that good normals have been
calculated for helical regions, and perform smoothing of loops, where desired.

Also under such conditions, in automatic mode, cartoon representations will be assigned according to the
secondary structure type. However, you can instruct PyMOL to ignore such information, and manually control
when and where various cartoon representations are employed.

 show cartoon
 cartoon automatic # default

Customization 41

 cartoon loop

 cartoon rect

 cartoon oval

Customization 42

 cartoon tube

 cartoon tube, 1:49/
 cartoon arrow, 50:99/
 cartoon loop, 100:149/
 cartoon oval, 150:199/
 cartoon rect, 200:250/

Customization 43

All cartoon ribbons have associated parameters accessible from the "set" command which allow you to
change their appearance. See the chapter on Settings for more information.

Fancy Helices

set cartoon_fancy_helices, 0

Molscript addicts who simply must have those ribbon helices with tubular edges will not be disappointed with
"fancy helices":

set cartoon_fancy_helices, 1

Fancy Helices 44

Secondary Structure Assignment

It is recommended that you read in PDB files which already have correct secondary structure assignments
from a program like DSSP. However, PyMOL does have a reasonably fast secondary structure alignment
algorithm called "dss". Please be aware that due to the subjective nature of secondary structure assignment in
borderline cases, dss results will differ somewhat from DSSP.

SYNTAX

dss selection

EXAMPLE

 dss 1dfr

If you are visualizing an animation, you may wish derive secondary structure assignment from a specific state
of the animation. This can be done with:

SYNTAX

dss selection, state

EXAMPLE

 dss mov, 1

To change assignments manually, the best way is to use the alter command as follows:

show cartoon
alter 11−40/, ss='H' # assign residues 11−40 as helix
alter 40−52/, ss='L' # assign residues 40−52 as loop
alter 52−65/, ss='S' # assign residues 52−65 as sheet
alter 65−72/, ss='H' # assign residues 65−72 as helix
rebuild # regenerate the cartoon

Secondary Structure Assignment 45

Ray−Tracing
Ray−tracing produces the highest quality molecular graphics images. PyMOL is the first full−featured
molecular graphics program to include a high−speed ray−tracer which works with its native internal
geometries (except text).

OpenGL Rendering (real−time manipulation)Ray−traced Rendering (seconds or minutes per frame)
You can ray−trace any Scene in PyMOL by clicking the "Ray Trace" button in the external GUI or using the
"ray" command. The built−in raytracer also makes it possible to easily assemble very high−quality movies in
a snap.

Important Settings

These can be changed using the "set" command. Unless otherwise specified, the settings apply only to the
ray−tracing engine and not the OpenGL renderer. Some reconciliation between the two renderers is much
needed, so be warned that these settings may change in the future.

Normally, the only settings you will need to change are orthoscopic, antialias, and gamma. If you are down
in an enzyme active site which is heavily shadowed, you may want to increase direct to 0.5−0.7 in order to
improve brightness and contrast.

orthoscopic (0 or 1) controls whether the OpenGL renderer uses the same orthoscopic transformation
as the renderer. You'll want to set this to 1 when preparing figures so that OpenGL and raytracing
match pixel−for−pixel.

•

ambient (0.0−1.0) controls the ambient light intensity for both OpenGL and the ray−tracer.•
ambient_scale (float) controls the relative ambient intensity between OpenGL and the ray−tracer.•
antialias (0 or 1) generate a "smooth" image (best quality, but takes 4X as long).•
direct (0.0−1.0) the planer light intesity originating from the camera.•

Ray−Tracing 46

gamma (0.1−2.0) gamma transformation applied after rendering is complete.•
light (vector) the position of the light.•
reflect (0.0−1.0) the planer light intesity originating from the light source.•
spec_reflect (0.0−1.0) intensity of the specular reflection from the light.•
spec_power (1−100) how localized is the specular reflection (higher=smaller).•

Saving Images

png

All images (ray−traced or not) can be saved in PNG format using the "png" command. This format is directly
readable by PowerPoint, and can be easily converted into other formats using a package like ImageMagick.
You can also save images using the "Save Image" option in the "File" menu. Images are always saved at the
same resolution as the viewer window.

 ray
 png my_image.png

Saving Images 47

Stereo

Introduction

PyMOL can supports several different stereo graphics options.

Supported Stereo Modes

Crosseye Stereo

Walleye Stereo

Hardware Stereo

Generating Stereo Figures

Stereo figures are often used in molecular graphics illustrations in order to provide the reader with a
three−dimensional view using a two−dimensional sheet of paper. To achieve a satisfying 3D effect, care must
be taken to insure that the stereo pairs are generated with the proper transformation and printed with the
correct separation between images.

A key challenge in preparation of stereo figures is the fact that journals usually shrink images before they are
printed. In preparing your figure, it is essential that your drafts correspond to the final printed size. You may
need to obtain this information from the journal ahead of time.

Stereo 48

Movies

Concepts

States and Frames

PyMOL has a powerful and unique molecular movie−making capability. In order to use it, you first need to
understand a few key concepts:

States: States most directly correspond to particular arrangements of atoms at a point in time. For
example, they could consist of steps in a molecular dynamics simulation or individual points of a
coordinate interpolation. If you are making a movie of a static coordinate set (such as a single crystal
structure) then you have only one state. All objects in PyMOL can potentially consist of multiple
states.

•

Frames: Frames are like the individual images you'd find on a movie reel, except that in PyMOL,
frames are composed of states instead of images, and frames can have additional actions associated
with them (such as rotation of the camera).

•

The user can fully interact with models while movies are playing.

NOTE: State and frame indexes begin with 1, and not 0 as most C and Python programmers would expect. If
you load states into an object with a state index of 0, you are indicating that you want the state to be appended
after the last existing state in the object.

Important Commands To Know

load

The "load" command is used to populate states of an object. By default, each new file loaded will be appended
onto the object's states. However, the optional third argument to the load command is the frame index into
which the file should be loaded. See "help load" or consult the reference section for more information.

 load foo1.pdb,mov # loads foo1.pdb into state 1 of "mov".
 load foo2.pdb,mov # loads foo2.pdb into state 2 of "mov".
 load foo3.pdb,mov,3 # loads foo3.pdb into state 3 of "mov".
 load foo4.pdb,mov,4 # loads foo4.pdb into state 4 of "mov".

mset

The "mset" command is used to specify which states get included as frames of a movie. If the mset command
is not used, PyMOL will by default play through all states in sequential order. However, if you wish to use the
other movie commands (such as mdo), it is necessary to explicity use the mset command to create a movie
definition inside of PyMOL.

The mset command is followed by an arbitrarily list of statements which defines the entire movie. Each
statement takes on one of three forms:

A number simply indicates a state is to be played next.1.

Movies 49

x# A lowercase "x" immediately followed by a number (no space) indicates that the previous state
should be repeated that many times total.

2.

−# A hyphen immediately followed by a number (no space) indicates that a numeric sequence of
states are to be appended onto the movie starting with the previously played state going to indicated
state.

3.

Once a movie has been defined, the red "VCR" controls in the lower−right−hand corner of the viewer can be
used to step or play through the movie.

Examples

 mset 1 x30 # creates a 30 frame movie consisting of state 1 played 30 times.
 mset 1 −30 # creates a 30 frame movie: states 1, 2, ... up through 30.
 mset 1 −30 −2 # 58 frames: states 1, 2, ... , 29, 30, then 29, 28, ... , 4, 3, down to 2
 mset 1 6 5 2 3 # 5 frames: states 1, 6, 5, 2, 3 in that order.

See "help mset" or the reference section for more information.

mdo

The "mdo" command allows you to bind a particular series of PyMOL commands to a frame in the movie. For
instance, you can perform a rotation about the axis at each frame of the movie in order to sweep the camera
about the object. See "help mdo" or the reference section for more information.

NOTE: The "util" module includes two python commands for generating mdo commands, "util.mrock" and
"util.mdo". These functions have not been documented, but the source code can be found in the file
modules/pymol/util.py. Since they are actual python functions, explicit parenthesis are required to invoke
them.

util.mrock(start, finish, angle, phase, loop−flag)
util.mroll(start, finish, loop−flag)

mmatrix

The "mmatrix" command allows you to store and recall a particular viewing matrix to be used to set up frame
1 of the movie. This can be particularly helpful when you're trying to preserve a movie's orientation while
performing other actions within PyMOL during the same session. See "help mmatrix" or the reference section
for more information.

Simple Examples

Here a static structure is subject to a gentle rock. The following statements create a sixty frame movie which
simply rocks the protein by 10 degrees.

 load test/dat/pept.pdb # load a structure
 mset 1 x60 # define the movie
 util.mrock(1,60,10,1,1) # issues mdo commands to create +/− 10 deg. rock over 60 frames

In this next example, the protein is rotated through a full 360 sweep about the Y−axis over 120 frames

 load test/dat/pept.pdb # load a structure
 mset 1 x120 # define the movie

mdo 50

 util.mroll(1,120,1) # issues mdo commands to create full rotation over 120 frames

Complex Examples

The following is a Python program (with a .py or .pym extension) which uses a Python loop to load a large
number of numbered PDB files, and then configures PyMOL to show them both forwards and backwards.

from glob import glob
from pymol import cmd

file_list = glob("mov*.pdb"):

for file in file_list
 cmd.load(file,"mov")

cmd.mset("1 −%d −2"%len(file_list))

Previewing Ray−traced Movie Images

PyMOL has the ability to cache a series of images in RAM and to play them back at a much higher rate than
they could be rendered originally. This is most−useful for ray−traced images, but it can also be used with
OpenGL images.

cache_frames

The cache_frames option controls whether or not PyMOL saves frames in memory. Its usage is demonstrated
in the following script. NOTE: caching images takes a tremendous amount of memory, so you should use the
"viewport" command to shrink the window before utilizing this option.

 viewport 320,240
 load test/dat/pept.pdb
 orient
 hide
 show sph
 mset 1 x30
 util.mrock 1,30,3,1,1
 set ray_trace_frames=1
 set cache_frames=1
 mplay

mclear

Once you have loaded a set of frames into RAM, the frames will remain there until you run the "mclear"
command, even if you manipule that model. You can also press the mclear button on the external GUI
window.

 mclear # flushes the frame cache

Saving movies

Complex Examples 51

mpng

You can save movie images to numbered PNG format files with a common prefix. If you want each frame to
be ray−traced, you should turn on raytracing of frames, turn off caching, and clear the cache (see the Movie
Menu or use the following commands).

 set ray_trace_frames=1
 set cache_frames=0
 mclear

You can save the movie using the "mpng" command, or you can save it from the "File" menu. Either way, you
must provide a prefix which will be used to create numbered PNG files.

 mpng mov # will create mov0001.png, mov0002.png, etc.

If you are compressing movies using Adobe Premiere (recommended for best quality), you will probably want
to convert the files using ImageMagick or a similar package into a format that Premiere is capable of reading
(such as ".tga" − targa format).

mpng 52

Advanced Mouse Controls

Picking Atoms and Bonds

The current mouse confiruation is visible on the lower right−hand corner of the screen as a matrix. Under the
default mouse configuration:

In Viewing Mode:

A single atom can be "picked" using the "Pk1" function which is CTRL/right−click.♦
Multiple atoms (up to 4) can be "picked" in series using the "PkAt" function which is
CTRL/right−middle.

♦

•

In Editing Mode:

A single bond can be "picked" using the "PkTB" function which is CTRL/right−click.♦
Multiple atoms (up to 4) can be "picked" in series using the "PkAt" function which is
CTRL/right−middle.

♦

•

Whenever an atom or bond has been picked, a number of atom selections are automatically defined as
described in the following table:

(pk1) The selected atom (or the first selected atom in a bond selection).•
(pk2) The second selected atom in a bond selection.•
(pkfrag#) A fragment of the molecule with its base adjacent to the selected bond or atom.•
(pkchain) The contiguous chain of atoms which contains the selected atom or bond.•
(pkresi) All atoms in the residue you picked.•

You can click on a selection name to see visually which atoms are included in the selection. All of these
selections can be used and manipulated as if they were created manually using the select command. Note
however, that these selections are quite fragile, and will be automatically deleted in response to a number of
common occurences, such as loading a new object.

Example Usage of the "pk" Atom Selections

Assuming that you picked an atom or bond...

 show sticks,(pkresi) # show sticks on the residue you picked

 color read,(pkchain) # color the chain you picked

 remove (byres pk1) # removes all atoms in the residue you picked

The "lb" and "rb" Selections

Most of the time, the "pk1" atom selection will suffice. However, there are times when you need to specify
two or more sets of atom selections. This is where "lb" and "rb" come in.

In addition to the "pk" atom selection set, there are two more atom selections which can be manipulated with
the mouse. These are: (1) the left−button or "lb" selection and (2) the right−button or "rb" selection. Under the

Advanced Mouse Controls 53

default mouse configuration:

The "lb" selection can be redefined using the "lb" function which is CTRL−SHIFT/left−click.•
The "lb" selection can be expanded using the "+lb" function which is CTRL/left−click.•
The "rb" selection can be redefined using the "rb" function which is CTRL−SHIFT/right−click.•

Certain commands are designed to use "(lb)" and "(rb)" as default arguments. For instance, the "distance"
command, if called without any arguments, will attempt to create a distance object between the (lb) and (rb)
selections if they exist

 # define (lb) by CTRL−SHIFT/left−clicking one atom
 # define (rb) by CTRL−SHIFT/right−clicking another

 dist # will create a distance object between the two atoms.

Conformational Editing

Sorry, no documentation yet −− these features won't be too useful until PyMOL is coupled up with an energy
minimiation engine.

Conformational Editing 54

Crystallography Applications

Crystal Symmetry

Ralf Grosse−Kunstleve has provided his SgLite module to enable PyMOL to deduce symmetry relationships
from standard space group and unit cell information. Currently that information can only be provided to
PyMOL as a CRYST1 record in the PDB file, which includes the correct space group identifier. However, it
would be only a minor development task to add a means of assigning unit−cell and symmetry to any molecule
object directly from the API.

The format of the CRYST1 record is as follows.

 1 − 6 Record name "CRYST1"
 7 − 15 Real(9.3) a a (Angstroms).
16 − 24 Real(9.3) b b (Angstroms).
25 − 33 Real(9.3) c c (Angstroms).
34 − 40 Real(7.2) alpha alpha (degrees).
41 − 47 Real(7.2) beta beta (degrees).
48 − 54 Real(7.2) gamma gamma (degrees).
56 − 66 LString sGroup Space group.
67 − 70 Integer z Z value. # ignored by PyMOL

load

When you use the "load" command to read in a PDB file with symmetry information, matrix information
should be output. Verify that this information is produced before attempting to display symmetry related
molecules.

symexp

The "symexp" command is used to display symmetry related molecules in the crystal lattice about an atom
selection. This commands creates a set of new objects with a common prefix. Each object in the series
corresponds to one symmetry−related object, which can be treated independently. See "help symexp" or the
reference section for usage information.

In order to visualize only symmetry−related atoms within a given distance, you need to break the process
down into two steps. First, you use the symexp command to create complete symmetry−related objects. Then
you use "hide" commands to restrict what is visible to only those areas which you are interested.

 load foo.pdb # load PDB file with CRYST record

 symexp sym,foo,(foo),5.0 # Create symmetry related "foo" objects
 # which pass within 5 angstroms of foo
 # using the prefix "sym"

 hide (not (foo expand 5)) # hide atoms greater than 5 A from foo

NOTE: The symexp command can potentially create large numbers of objects. You will want to use the
"delete" command with a wildcard "*" to remove all objects that share a common prefix.

 delete sym* # deletes objects starting with "sym"

Crystallography Applications 55

Electron Density Maps

The only map file format currently supported is the CNS and XPLOR ASCII format map file. PyMOL can
read large maps of this format and then display arbitrary "bricks" of density within these maps about atom
selections.

load

PyMOL expects XPLOR/CNS map files to have a ".xplor" extension. This requirement can be avoided by
supplying an explicit type of "xplor" to the "load" command.

 load 2fofc.xplor,map1 # type inferred from the extension
 load 2fofc.map,map1,1,xplor # type explicitly provided

See "help load" or the reference section for additional information.

isomesh and isodot

Map objects are used to store the data and are represented by a wire−frame brick in space indicating the extent
of the map. An arbitrary number of mesh or dots objects can be created from a given map using the "isomesh"
and "isodot" commands.

 isomesh msh1,map1,1.0 # display an isosurface−mesh at level 1.0 over
 # the entire map object "map1"

 isomesh msh2,map1,1.0,(chain A),3.0 # display isosurface−mesh at 1.0
 # in a brick about chain A with a
 # border of 3.0 Angstroms

See "help isomesh" or the reference section for additional information.

Electron Density Maps 56

Compiled Graphics Objects (CGOs) and Molscript
Ribbons

Introduction

Although PyMOL uses OpenGL for all real−time rendering, the simple ray−tracing engine inside of PyMOL
is incapable of understanding arbitrary OpenGL calls. Thus, any graphics scene must be translated into a set
of primitives (spheres, cylinders, and triangles) that can be provided to the ray−tracer in order to generate high
quality images with "ideal" geometries, lighting, and shadows.

Compiled graphics objects are a PyMOL−specific format which enables any Python programmer to create
three−dimensional geometries and animations which can be displayed at high−speed via OpenGL and also
rendered into maximum−quality images via the raytracer without any additional work.

Molscript Ribbons

NOTE: Molscript is a commercial software (free to academics) available at http://www.avatar.se/molscript/
and must be obtained separately. It is our intention to eventually implement our own Molscript−quality
ribbons directly from within PyMOL, but that day has not yet come.

PyMOL can automatically translate Raster3D format input files output by Molscript (with "−r" option) into
Compiled Graphics Objects for display and rendering inside of PyMOL. PyMOL expects these files to have
the file extension ".r3d". NOTE: the Raster3D−to−CGO interpreter is a bare−minimum Python
implementation, and doesn't include anything beyond what is required to read what is output by Molscript.

load

 load test/dat/pept.r3d # loads one of the example raster3d files

Using Molscript

molauto

When using molauto to preparing input files for PyMOL, it is important to use the "−nocentre" option to
prevent any transformation of the protein. That way the PDB file and the Molscript ribbons will be in the
same frame of reference.

Unix> molauto −nocentre 3al1.pdb | molscript −r > test1.r3d
Unix> molauto −nocentre −nice 3al1.pdb | molscript −r > test2.r3d

You can load both PDB and ribbon files directly into PyMOL as separate objects.

 load 3al1.pdb # loads the coordinates
 load test1.r3d # loads molscript ribbon

Molscript Input Files

Unfortunately, PyMOL does not have the ability to write molscript input files which reflect the current atom

Compiled Graphics Objects (CGOs) and Molscript Ribbons 57

colorings and visibilities. Therefore, you will need to get in the habit of manually editing Molscript input files
in order color and customize ribbons appropriately. Here are some tips:

1. Remove any line starting with "transform atom" from existing Molscript input files in order to preserve the
frame of reference. For example:

 transform atom * by centre position atom *;

2. For performance reasons, you may want to set the segments to a small number while working with
Molscript ribbons in real−time. Later on you can increase this number, recreate, and reload the ".r3d" files.

 set segments 2; # good for real−time graphics

 set segments 8; # good for rendering

The easiest way to create new ribbons using PyMOL is to use the "save" command to write out a PDB file
containing the atom selection of interest. You can then apply the "system" command to run molauto and
molscript, and then load the Raster3D file back into PyMOL.

 save tmp.pdb,(chain C)
 system molauto −nocentre tmp.pdb | molscript −r > tmp.r3d
 load tmp.r3d

Creating Compiled Graphics Objects

Compiled graphics objects contain equivalents to the normal line and triangle primitives found in OpenGL but
also include primitives for spheres and cylinders.

At the Python level, compiled graphics objects are constructed as a simple linear list of Python floating point
numbers, which is conceptually equivalent to an OpenGL stream.

from pymol.cgo import * # get constants
from pymol import cmd

obj = [
 BEGIN, LINES,
 COLOR, 1.0, 1.0, 1.0,

 VERTEX, 0.0, 0.0, 0.0,
 VERTEX, 1.0, 0.0, 0.0,

 VERTEX, 0.0, 0.0, 0.0,
 VERTEX, 0.0, 2.0, 0.0,

 VERTEX, 0.0, 0.0, 0.0,
 VERTEX, 00, 0.0, 3.0,

 END
]

cmd.load_cgo(obj,'cgo01')

CGOs support the standard OpenGL BEGIN/END formalism as well as a few stand−alone primitives,
SPHERE, CYLINDER, and TRIANGLE, which should NOT appear within a BEGIN/END block.

Creating Compiled Graphics Objects 58

CGO Reference

A CGO is simply a Python list of floating point numbers, which are compiled by PyMOL into a CGO object
and associated with a given state.

Lowercase names below are should be replaced with floating−point numbers. Generally, the TRIANGLE
primitive should only be used only as a last restore since it is much less effective to render than using a series
of vertices with a BEGIN/END group.

BEGIN, { POINTS | LINES | LINE_LOOP | LINE_STRIP | TRIANGLES | TRIANGLE_STRIP | TRIANGLE_FAN },

VERTEX, x, y, z,

COLOR, red, green, blue,

NORMAL, normal−x, normal−y, normal−z,

END,

LINEWIDTH, line−width,

WIDTHSCALE, width−scale, # for ray−tracing

SPHERE, x, y, z, radius # uses the current color

CYLINDER, x1, y1, z1, x2, y2, z2, radius,
 red1, green1, blue1, red2, green2, blue2,

TRIANGLE, x1, y1, z1,
 x2, y2, z2,
 x3, y3, z3,
 normal−x1, normal−y1, normal−z1,
 normal−x2, normal−y2, normal−z2,
 normal−x3, normal−y3, normal−z3,
 red1, green1, blue1,
 red2, green2, blue2,
 red3, green3, blue3,

load_cgo

CGO lists are loaded into PyMOL using the "load_cgo" function.

cmd.load_cgo(list,name,state)

Arbitrary 3D animations can be created by loading CGOs into consecutive states of a given object. The
example below is a static image from the "examples/devel/cgo03.py" cgo animation demonstration program.

CGO Reference 59

CGO Reference 60

Callback Objects and PyOpenGL
This is mainly a developer's function, so most users can skip this section. You will need some Python
knowledge to understand the example.

Introduction

Athough all OpenGL rendering in PyMOL is perfomed at the C level, PyOpenGL provides an alternative
binding of the OpenGL API from Python. Unfortunately, it is impossible for PyMOL to produces ray−traced
images of objects rendered using PyOpenGL. Nevertheless, PyOpenGL can be used within PyMOL via
Callback objects for pure OpenGL−based rendering pursposes. If you need your graphics to ray−tracable, then
you should use Compiled Graphics Objects (see previous section).

Callback objects are trivial Python objects which have a "__call__" method for rendering and a "get_extent"
method which tells PyMOL where in space the object is located. Once a callback object has been loaded into
PyMOL, Python will automatically call this object when needed to update the screen.

PyMOL includes a copy of PyOpenGL under the pymol module hierarchy (pymol.opengl), but usage of this
copy is of course optional. You can instead bind to the latest version without problems, provided that you
install it yourself into the Python library that PyMOL is using by default.

NOTE: The current Window's version of PyMOL does not include Numeric, which makes heavy usage of
PyOpenGL from within PyMOL impractical under Windows at present.

Example

The following Python program shows how you can use a Callback object within PyMOL to perform rendering
using OpenGL. For more examples, see the directory "$PYMOL_PATH/examples/devel".

from pymol.opengl.gl import *
from pymol.callback import Callback
from pymol import cmd

class myCallback(Callback):

 def __call__(self):

 glBegin(GL_LINES)

 glColor3f(1.0,1.0,1.0)

 glVertex3f(0.0,0.0,0.0)
 glVertex3f(1.0,0.0,0.0)

 glVertex3f(0.0,0.0,0.0)
 glVertex3f(0.0,2.0,0.0)

 glVertex3f(0.0,0.0,0.0)
 glVertex3f(0.0,0.0,3.0)

 glEnd()

 def get_extent(self):

Callback Objects and PyOpenGL 61

 return [[0.0,0.0,0.0],[1.0,2.0,3.0]]

cmd.load_callback(myCallback(),'gl01')

load_callback

Callback objects are loaded into PyMOL using the "load_callback" function.

 cmd.load_callback(object,name,state)

load_callback 62

	Table of Contents
	Copyright Notice and Usage Terms
	Copyright Notice
	Terms of Usage for the PyMOL User's Manual
	Trademarks

	Preface
	Why PyMOL?
	Words of Caution
	Strengths
	Weaknesses

	Introduction
	Welcome to PyMOL!
	Is PyMOL Free Software?
	Yes, but...

	The DeLano Scientific Mission

	Installation
	Windows
	Recommendations
	Minimal System Requirements
	Python-Free Installation
	Python-Dependent Installation

	MacOS X
	Recommendations
	Minimial Requirements
	If you use Fink
	If you do not use Fink

	Linux and Unix
	System Requirements
	Dependency-Free Approaches
	Dependency-Based Approaches

	Getting Started with Mouse Controls
	Launching
	Using the Mouse
	Using a Command Line

	PyMOL's Windows
	The Viewer Window
	The External GUI Window

	Loading PDB Files
	Manipulating the View
	Basic Mouse Control
	Virtual Trackball Rotation
	Moving Clipping Planes
	Changing the Origin of Rotation
	Getting Comfortable

	Getting Started with Commands
	Recording Your Work (Optional)
	Loading Data
	Manipulating Objects
	Atom Selections
	Coloring Objects and Selections
	Turning Objects and Selections On and Off

	 Changing Your Point of View
	Saving Your Work
	Scripts and Log Files
	png Files
	Session Files

	Command-Line Shortcuts
	Command Completion using TAB
	Filename Completion using TAB
	Automatic Inferences

	 Other Typed Commands and Help

	Command Syntax and Atom Selections
	Syntax
	Selection-expressions
	Named Atom Selections
	Single-word Selectors
	Property Selectors
	Selection Algebra
	Atom Selection Macros

	Calling Python from within PyMOL

	Cartoon Representations
	Background
	Accessibility
	Pretty and Correct

	Customization
	Cartoon Types
	Fancy Helices

	Secondary Structure Assignment

	Ray-Tracing
	Important Settings
	Saving Images
	png

	Stereo
	Introduction
	Supported Stereo Modes
	Crosseye Stereo
	Walleye Stereo
	Hardware Stereo

	Generating Stereo Figures

	Movies
	Concepts
	States and Frames

	Important Commands To Know
	load
	mset
	mdo
	mmatrix

	Simple Examples
	Complex Examples
	Previewing Ray-traced Movie Images
	cache_frames
	mclear

	Saving movies
	mpng

	Advanced Mouse Controls
	Picking Atoms and Bonds
	Example Usage of the "pk" Atom Selections
	The "lb" and "rb" Selections
	Conformational Editing

	Crystallography Applications
	Crystal Symmetry
	load
	symexp

	Electron Density Maps
	load
	isomesh and isodot

	Compiled Graphics Objects (CGOs) and Molscript Ribbons
	Introduction
	Molscript Ribbons
	load
	Using Molscript

	Creating Compiled Graphics Objects
	CGO Reference
	load_cgo

	Callback Objects and PyOpenGL
	Introduction
	Example
	load_callback

